UCRL- 9% Lb4%b
PREPRINT

CACHE COHERENCY ON THE S-1 AAP

John D. Bruner
Gary W. Hagensen
Eric H. Jensen
Jay C. Pattin
Jeffrey M. Broughton

This paper was prepared for submittal to The 15th
Annual Internarional Svmposium on Computrer Architecture
Honolulu, Hawaii
May 30 - June 2, 1988

November 11, 1987

]

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes mav be made before publication, this preprint is made available with the

understanding that it will not be cited or reproduced without the permission of the
author.

CIRCULATION COPY
SUBJECT TO RECALL
IN TWO WEEKS

DISCLAIMER

This document was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal Iliability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any
specific commercial products, process, or:service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement recommendation, or favoring of the United States
Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Cache Coherency on the S-1 AAP
John D. Bruner
Gary W. Hagensent
Eric H. Jensen

Jay C. Pattin
Jeffrey M. Broughton

S-1 Project, Lawrence Livermore National Laboratory

Abstract
A cache coherency scheme for shared-memory multiprocessors is described. Unlike most cache

coherency schemes, the proposed method does not require the client caches to be connected by a shared
bus. Participating caches need only expend cycles to process cache blocks which are shared — there is no
performance penalty for caches which do not contain shared data. The S-1 AAP, a multiprocessor under

construction at Lawrence Livermore National Laboratory, uses this scheme.

Introduction

Mid-range and high-performance computers of the last two decades have employed a multiple-level
memory hierarchy. With the processor located at the highest level, each successively lower level provides
larger capacity at a lower cost; however, the lower levels are slower than the higher ones. The goal of a
hierarchical storage system is to obtain the speed of the highest level and tﬁe size/cost characteristics of the
lowest level. At any time, a logical data item resides at one level. Data items, usually organized into

blocks, are moved from level to level to satisfy processor access requirements.

A cache is a (relatively) small random-access storage device which occupies a position in the
memory hierarchy between the processor and the main memory system. The cache usually has an access
time comparable to the cycle time of the processor, while the larger main memory system is considerably
slower. In most machines hardware is responsible for the movement of data between the cache and main

memory. In a correctly functioning system the movement of data between these levels is transparent to

1This author is now at MIPS Computer Systems, Sunnyvale, CA.

_2.

programs running on the processor (aside from the effect upon the execution speed).

The management of a memory hierarchy is more difficult if multiple functional units can reference
memory. This situation can arise in a shared-memory multiprocessor or in a machine with independent or
semi-independent input/output processors. The efficient support of multiple paths to memory may require
that some levels of the hierarchy be replicated. To ensure coherence, all copies of the same logical data

itemn at the same level in the hierarchy must be identical.

Background

Aside from making all shared data uncachable, the most straightforward technique for avoiding the
cache coherence problem is to use a single cache (per main memory module) which all processors share.
Although conceptually simple, this solution is usually unacceptable because of the high bandwidth
required. In addition, the distance from the processors to the shared cache will probably be greater than the

distance to private per-processor caches; hence, accesses will probably suffer from prépagadon delays.!

Censier and Feautrier? describe the classical approach to cache coherency for biprocessors or
uniprocessors with independent inputoutput processors. Caches use a write-through smategy. All caches
are connected to an auxiliary data path over which all other active units send the addresses of blocks to be
modified. When this address hits the cache, the corresponding block of data in the cache is invalidated.
This scheme is simple, but it suffers performance problems if the invalidation rate becomes too high. The

caches may spend a large proportion of their time processing invalidation traffic.

Another approach to cache coherency is to implement a central directory to keep track of the sharing
among caches. Tang3 proposed a scheme in which a central ‘‘store controller’” maintains the contents of
the shared directory and sends commands to all of the caches. The client caches send requests to the store
controller to obtain shared data (read-only), to obtain private data (read-write), to evict data, and to convert
shared data to private data. In return, the controller issues commands to the caches to move data around
and to invalidate data as necessary. A similar approach was used in the design of the S-1 Mark IIA
multiprocessor.* The central directory scheme requires additional storage for each block of memory.

Usually the memory required varies linearly with the number of processors; however, a solution using only

two bits per block has been proposed.’

A further problem with central directory schemes is that they demand a very high performance level
from the shared hardware to prevent it from becoming a bottleneck for the entire system. This can become
quite difficult and expensive to achieve. To avoid this problem, the directory can be distributed among the ,
participating caches. One such scheme is *‘write-once,’’® which uses a combination of write-through and
write-back on a standard bus. Each cache maintains the status of each of its blocks. Initially the status of a
cache block is “‘valid.”’” The first processor write to a block is written through to memory, and the block’s
status is changed to ‘‘reserved.”” Subsequent writes are written only to the cache, and the status of the
block is changed to ‘*dirty.”’ The caches also monitor all activity on the shared bus. When a bus write hits
in a cache, the cache invalidates the corresponding block. When a bus read references a reserved block in
the cache, its status is changed back to *‘valid.”” When a bus read references a dirty block in the cache, the
cache responds with the data (suppressing the response from main memory), writes the modified data back

to main memory, and clears its ‘‘dirty’” status. One advantage of this approach is that processors which do

not contain caches (e.g. input/output precessors) can coexist with those which do contain caches.

Several other distributed control schemes have been implemented and proposed.”-3:9:10 These
schemes offer reductions in the amount of traffic on the shared bus, and in some cases reduce the workload

for participating caches.

Coherence Without a Shared Bus

The S-1 Advanced Architecture Processor (AAP) is a shared-memory multiprocessor under
construction at the Lawrence Livermore National Laboratory. Two counter-rotating slotted rings connect
the functional units on an AAP multiprocessor. Each processor contains associated instruction and data

caches. (Companion papers provide further details regarding the AAP and its interconnection network.)

Nearly all of the pre-existing cache coherency schemes rely upon either a shared bus or a high-speed
broadcast facility. The AAP multiprocessor has no shared bus, and the AAP ring network does not provide
broadcast. A further complication arises because of the variable latency between nodes — messages travel

between nodes in a time proportional to the distance between them on the ring.

To support shared-memory multiprocessing on the AAP, a new distributed cache coherency scheme

— linked writes — was devised. The following hardware assumptions underlie the design of the linked

write protocol:

L.

All functional units share a common address space. There is a unique physical address for each

memory element.

All functional elements are interconnected. Any processor, input/output adapter, memory, or other
functional unit can access any other. The topology of the network is unspecified (except as noted in

assumption 3 below); in particular, a shared bus is not required.

Messages from one functional unit to another are delivered in time order. If processor P sends two
messages A and B to memory M they will arrive in the same order in which they were sent (i.e. A

will armive before B).

Write access to shared memory is obtained through the use of synchronization. This reduces the
cache coherency problem to the case of a single writer (the idendty of which may change over time)
and multiple readers. Software uses a synchronization mechanism to arbirrate write access among

multiple writers. A distributed synchronization mechanism is described in a companion paper.

Linked Write Implementation

block

For the purpose of exposidon the following terms are defined:

A block is the unit by which the cache is organized. Goodman!! proposes three different types
of blocks: address blocks (the amount of information associated with a single tag in the cache),
transfer blocks (the amount of data moved at one time between main memory and the cache),
and coherence blocks (the amount of data for which coherence state informaton is
maintained). On the AAP, thg transfer unit for writebacks is the doubleword (8 bytes), while
cache misses always' cause an address block (32 bytes) to be fetched. The AAP coherence
block the same as its address block. In the following text, the term ‘‘block’’ always refers to a

coherence block.

-5-

list A list is a set of caches which are actively sharing a particular block. The implementation

distinguishes one member of the list as the head.

page A page is the unit of memory address translation and protection. An integral number of blocks
fit into a page.

Pages of memory are designated shared or unshared under software control. Unshared pages do not
participate in the cache coherence protocol. Blocks within these pages are handled in a conventional
write-back fashion: they are fetched from memory on demand, and any *‘dirty’’ words are written back to
memory when the block is evicted. Memory which is accessed by only one processor (e.g. a per-process
stack segment), or memory which is never written (e.g. a pure code segment) uses unshared pages.
Segments which are accessed by multiple processors use shared pageg. The S-1 AAP will use the Amber

operating system,!2 which provides a single-level store that permits multiple processes to share segments.

Blocks that lie within shared pages participate in the coherence algorithm. Extra fields of

information are associated with each block in each cache, as follows:

shared A block is shared if it corresponds to part of a shared page. Shared blocks are the basis for

cache coherence.

next The caches which contain a shared block are organized into a circular linked list. The ‘‘next’”’

field in each block contains a unique identifier for the next cache in the list.

head A block is considered the “‘head’’ of a list if the cache which contains it was the first to request

the data from main memory.

Main memory also associates information with each shared block:

active The **active’’ bit identifies whether a particular block currently is being shared by one or more
caches.
first The ‘‘first’’ field contains the identifier for the cache which is the head of the shared list.

Figure 1 illustrates the sharing of data among different caches. Direct-mapped caches are used for
simplicity of illustration; however, the scheme is directly adaptable to all cache organizations. (The AAP’s

caches are two-way set associative.) Caches A and B share one block, and memory designates B as the head

-6-

of the list. Cache C is also sharing a block; however, in this case there is only one current member on its

list (C itself).

When processor A writes a2 word within its shared cache block, the write first occurs within A’s own
cache. A then sends a point-to-point message to the next element on this list This message, which is
called a linked-write (LW), contains the address, the new data, and the originator’s identifier (4). The next
element, B, writes the darta into its cache and forwards the message to its successor. In this example, B’s
successor is A. A recognizes that it originated the message, so it takes no further action. Thus, the new
data proceeds around the linked list, successively updating each list member until it returns to its origin. If

the list has only one member, as is the case with C in Figure 1, no traffic is generated.

The advantage of the linked write scheme is that only those caches which contain a shared block will
receive update messages for that block. Caches which do not contain the block are not affected. The
processor which orginates the linked write need not wait for it to return; however, the linked write must
have returned before the line is evicted in order to ensure that all pending updates have been completed
before the line is written back to main memory. (For implementation reasons, on the S-1 AAP a second

linked write cannot be started unul the first one has returned.)

Shared List Creation and Maintenance

Initially there are no shared lists, and all of the ‘“‘active’ tag bits in the main memory are false.
Special messages are used to create lists, add new members to existing lists, remove members from lists,
and destroy lists. The add-to-list command creates lists and adds members to existing lists. The remove-

from-list command removes members from existing lists. The kil-list command destroys a shared list.

When a processor makes a reference to an address within a shared page and the cache misses, the
cache will send an add-to-list (ATL) to main memory. An ATL resembles a normal cache miss in that it
causes the contents of the cache block to be delivered to the requesting cache. However, memory

recognizes it as distinct from a normal miss and processes it specially.

If the ‘‘active’’ bit for the corresponding block in main memory is false, the memory block is

transferred to the cache. The memory sets the ‘‘active’’ bit and stores the cache’s identifier in the **first”’

-7-

field. In addition, the cache is notified that it is the head of the list. If the “‘active’’ bit in memory is true,
then the list already exists and some other cache is the head of the list. In this case the memory forwards

the ATL to the head of the list for further handling as described below.

‘

~ When a cache receives a response from its ATL, it marks the cache block shared. If the response
indicates that the cache is the head of the list, it sets its ‘‘head’’ bit and stores its own identifier into the
“next’”’ field. If the response indicates that it is not the head of the list, then the response will also contain
the identifier of its successor on the list. It clears its ‘‘head’” bit and stores its successor’s identifier.

Figure 2 illustrates the result of adding C to the list shared by A and B.

When memory receives an ATL for an existing list, it forwards the ATL to the head of the list. The
head of the list sends the cache block to the new list member. It places the address of the next list member
into the response it sends to the new member, and it changes its ‘‘next’’ pointer to refer to the new

member. Thus, the new member is inserted into the linked list following the head.

When a cache wishes to leave a linked list, it sends a remove-from-list (RFL). Let the cache which
wishes to be removed be R, its successor in the list be S, and its predecessor be P (i.e. P points to R, and R
points to S). The RFL message contains an originator field (which will be the identifier of R) and an
originator-next-node field (which will be the identifier of §). The RFL propagates around the list undl it
reaches P, the node whose ‘‘next’”’ field matches the RFL’s originator. P forwards the RFL to R and then
replaces its ‘‘next’’ field with the originator-next-node field of the RFL. Now P points to § — R has been

removed from the list. Figure 3 illustrates this process.

If a cache has an RFL outstanding and it receives an RFL which names itself as the originator-next-
node, then it changes the originator-next-node to the identifier of its successor. Figure 4 illustrates the case

in which two RFL’s are outstanding.

The head of a list cannot leave the list using an RFL message, because memory knows the location
of the head. Instead, the head leaves the list by issuing a kifl-list (KL) message. As this message
propagates around the list, each cache which receives it invalidates its copy of the cache block. When the
KL returns to the head, it writes any modified words back to main memory and sends a kill-list-head

command to memory. Upon receipt of this message, memory clears the ‘*active’’ bit for the block and

-8-

sends a reply to the former head indicating that the operation is complete. If some processor is still
generating addresses within the now-inactive shared block, that processor’s cache will issue an ATL and a

new list will be created.

If the head of a list receives an ATL from a cache which wants to join the list, but the head is waiting
for an outstanding KL to return, the head returns the ATL to the memory. The ATL will ‘‘bounce’’ back
and forth between the memory and the head until the head completes its KL, writes back any dirty words,
kills the list in memory, and receives the confirming reply from memory. The next time that the memory
receives the ATL, the memory’s “‘active’’ bit will be false, so it will create a new list with the new cache

as the head.

Observations

There is no limit to the size of the lists that the linked write scheme can use. However, other factors
may place limits on the use of this scheme. There is no mechanism for reorganizing large lists; therefore,
for such lists the total distance traversed by the individual point-to-point messages may exceed the sum of
all of the internode distances. This suggests that the linked write scheme is best suited for 2 modest

number of functional units (the S-1 AAP has a maximum of 256).

Although the pattern of memecry utilization varies from application to application, shared lists for
most AAP applications are expected to be relatvely short. Many applications which structure the sharing
of data (e.g. wave-front computaton) will exhibit spatial locality, causing the lists to be small. Lists
resulting from unstructured sharing are also expected to be small, because the contents of the cache exhibit
temporal locality. In the limiting case, in which only one processor is ‘‘sharing’’ a particular cache block,

the linked write scheme incurs no additdonal time cost.

The linked write cache approach makes all shared data cacheable, and it avoids invalidation of
cached data caused by writes in other caches. The shared data that a processor needs remains immediately
accessible; the throughput of the system need not suffer while an invalidated cache block is revalidated or
brought in from another cache or from main memory. Only shared writes generate coherence traffic; reads

are ‘‘free.”’

-9-

The linked write cache coherency scheme does not address the issue of interprocessor
synchronization. If multiple processors perform linked writes at the same time, the non-simultaneity
characteristics of a non-bus, non-broadcast interconnection mechanism will cause the caches on a list to be
updated with different values. One can think of the linked write scheme providing a form of limited
coherence, which — when coupled with synchronization — provides full coherence. The S-1 AAP

provides a separate (but related) mechanism to perform synchronization among writers.

The linked write cache coherency scheme requires that additional information be stored with each
block in the caches and in main memocry. However, for an N' processor system the memory requirement is
only O (loga N). The cost is not onerous, particularly considering the rapid growth in RAM size and rapid

decline in RAM cost.

In the general implementation all cache coherency messages (LW’s, ATL’s, RFL’s, and KL’s)
specify the physical address of the affected data, requiring each recipient to search its local directory to find
the affected block. (The block is guaranteed to be present, but some logic may be required to determine its
location.) If the system is homogenous, i.e. if all caches are identical. then this search can be eliminated by
storing the block number, set number. and any other necessary information along with the “‘next’’ field in
tag for the block. In this fashion each cache I informs its successor J exactly where J may find the data in

its cache.

Conclusions

The linked write cache coherency scheme has been described. It dynamically maintains lists of
caches within a multiprocessor which share cache blocks, and updates these shared blocks using point-to-
point messages. Unlike many other schemes no shared bus or broadcast facility is provided. Only caches
which are actively sharing a data item incur the updating expense. This scheme has the potential to be used

on a variety of different interconnection networks.

Acknowledgement

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract number W-7405-ENG—48 with support from the Office of Naval
Technology.

-10-

References

1.

10.

11.

12.

Alan Jay Smith, “‘Cache Memories,”” ACM Computing Surveys, vol. 14, no. 3, pp. 473-530,
September 1982.

Lucien M. Censier and Paul Feautrier, ‘‘A New Solution to Coherence Problems in Multicache
Systems,”” IEEE Transactions on Computers, vol. C-27, no. 12, December 1978.

C. K. Tang, ‘“Cache System Design in the Tightly Coupled Multiprocessor System,”’ Proceedings,
National Computer Conference, vol. 45, pp. 749-753, 1976.

L. C. Widdoes, ‘‘S-1 Multiprocessor Architecture,”” 1979 Annual Report — The S-1 Project,
Volume 1: Architecture, Lawrence Livermore National Laboratory Technical Report UCID 18619,
1979.

James Archibald and Jean-Loup Baer, *‘An Economical Solution to the Cache Coherence Problem,”’
Proceedings, 11th Annual Symposium on Computer Architecture, pp. 355-362, June 1984.

James R. Goodman, ‘‘Using Cache Memory to Reduce Processor-Memory Traffic,”” Proceedings,
10th Annual Symposium on Computer Architecture, pp. 124-131, June 1983,

Larry Rudolph and Zary Segall, ‘‘Dynamic Decentralized Cache Schemes for MIMD Parallel
Processors,’’ Proceedings, 11th Annual Symposium on Computer Architecture, pp. 340-347, June
1984.

Mark S. Papamarcos and Janak H. Patel, *‘A Low-Overhead Coherence Solution for Multiprocessors
with Private Cache Memories,”” Proceedings, 11th Annual Symposium on Computer Architecture,
pp- 348-354, June 1984.

R. H. Kaez, S. J. Eggers, D. A. Wood. C. L. Perkins, and R. G. Sheldon, ‘‘Implementing a Cache
Consistency Protocol,”” Proceedings, 12th Annual Symposium on Computer Architecture, pp. 276-
283, June 1985.

Philip Bitar and Alvin M. Despain. ‘“Multiprocessor Cache Synchronization — Issues. Innovations,
Evoluton.” Proceedings, 13th Annuai Symposium on Computer Architecture, pp. 424-433, June
1986.

James R. Goodman, ‘‘Coherency For Multiprocessor Virtual Address Caches,”” Proceedings, 2nd
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 72-81, October 1987.

Jeffrey M. Broughton, P. Michael Farmwald, and Thomas M. McWilliams, The S-1 Multiprocessor
System, Lawrence Livermore National Laboratory Technical Report UCRL 87494, April 2, 1982.

Cache B Cache A
> A B
Cache C Mem X
B
C
C

Figure 1

Cache B Cache A

——— C ——>» B
Cache C Mem X
A B
C
C

Figure 2

0.9

1) R sends RFL: originator = 2) S passes RFL unchanged
originator next node =S

S &

RFL O e

3) Preceives RFL 3.3) P next pointer := RFL originator next node (S)
P's next pointer = RFL's originator R is now removed from Lhe list
P forwards RFL to R, then..

Figure 3

RFL1 RFL1 RFL2'
> (/ O
o ©

1) S sends RFL1: originator = S 2) T passes RFLI unchanged

originator next node =P ..
RFL2 originator next node = S

R sends RFL2: originator = R S changes RFL2 into RFL2":

originator next node = S originator =R
originator next node =T

RFL2' 5 c
(D=
(»)

3) T passes RFL2' unchanged 3.5) P next pointer := RFL1 originator next node (S)
R is now removed from the list

P receives RFL1
P's next pointer = RFL1's originator
P forwards RFL1 to R, then...

S

o]
§

<

O

®

RFL1
4) P receives RFL2' 4.5) P next pointer := RFL2 originator next node (T)
P's next pointer = RFL2's originator S is now removed from the list

P forwards RFL2' to S then...

Figure 4

